Nanoobjects microscopy

Morphological Features of Silica Particles in Siliceous Sedimentary Rocks

S.B. Shekhunova, S.M. Stadnichenko

Laboratory of Scanning Microscopy, Institute of Geological Sciences, National Academy of Sciences of Ukraine. O. Honchara str., 55-b, Kyiv-03601, Ukraine. *E-mail:* shekhun@gmail.com

Nonclastic siliceous sedimentary rocks (e.g. diatomite, opoka, tripoli) are formed by a fossil fragments and/or mineral particles and composed of 70 - 90% of silica (opal) with admixtures of clay, carbonate, zeolites, metallic oxides etc. Diatomite mainly consists of biogenic opal-A. Tripoli and opoka mainly consist of opal-CT.

SEM study of silicilithes from some deposits in Ukraine revealed main morphological features of opal-A transforming into opal-CT. Eocene Kharkiv "opoka" (age 40±4 Ma) formed by diatomites frustules and their fragments (well recognized by honeycomb or cellular texture) is composed of amorphous opal-A. But neomorphic rosettes and embryonic lepispheres of 1-2 µm in diameter of opal-CT and their clusters are also observed (Fig. A). Eocene Kirovohrad tripoli (age 40±4 Ma) shows mono- and polilepispheric texture, with the size of each opal-CT lepispheres being 8-14 µm (Fig. B). Cretaceous (Alb-Senomanian) Lviv opoka (age 100±5 Ma) consists of opal-CT lepispheres of 5-10 µm size and contains admixtures of neomorphic zeolites (Fig. C). Figs. B-C illustrate bladed opal-CT lepispheres with regular 70° or 180°-70° angles giving evidence of the twinning law of tridymite; those were formed as a result of low-temperature recrystallization of biogenic opal-A into opal-CT. Transformation kinetics depends on temperature, parameters of host environment, time etc. Specific surface area of nonclastic siliceous sedimentary rocks ranges from 15 m²/g for rock to 200 m²/g for treated material. Their low cost, availability, excellent biocompatibility, thermal stability, and chemical inertness make diatomite, tripoli, opoka attractive materials for numerous applications ranging from absorption to pharmaceutics.

Fig. Microtexture: diatomite (A), tripoli (B) and opoka (C)